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In this class, we will tackle reconstruction problems. Namely, given ran-
dom variables X1, . . . , Xn, we build — with various methods depending on
the context — estimators K̂ = K̂(X1, . . . , Xn) aiming at approximate a
target compact subset K ⊂ RD. Hence, we have to make clear what “ap-
proximate” means for compact sets. For this, we use the Hausdorff distance
dH. Consequently, we have to clarify what to be a compact sets-valued esti-
mator means, or equivalently, describe measurability properties in the space
of compact subsets endowed with the Hausdorff distance. To ensure not to
focus on technical details about measurability later on, we choose to address
them in this note.

Roughly speaking, the take-away message is that the class of compact
subsets of a metric space behaves as well as the metric space itself. Hence,
random variables with values in it do so.

1. Hausdorff Distance

Let (D, d) be a metric space. This class will only tackle the case (D,d) =
(RD, ‖·‖). However, we state Hausdorff distance properties in full generality
to emphasize the key points that have our case work.

We let K(D) denote the set of nonempty compact subsets of (D,d). For
x ∈ D and K ⊂ D, the distance from x to K is

dK(x) = inf {d(x, y), y ∈ K} .

One easily checks that dK(.) is a 1-Lipschitz map. Let us define the Haus-
dorff distance.

Definition 1.1. For two compact subsets A,B ⊂ RD, the Hausdorff dis-
tance between A and B is defined by

dH(A,B) = max
{

sup
a∈A

dB(a), sup
b∈B

dA(b)
}
.

dH is a distance on the space K(D) of nonempty compact subsets of (D, d).
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Figure 1. The Hausdorff distance between two subsets A
and B of the plane. In this example, dH(A,B) is the distance
between the point a in A which is the farthest from B and
its nearest neighbor b on B.

Proof. It is clear from the definition that dH(·, ·) is finite on compact sets,
and symmetric. Moreover, if dH(A,B) = 0, then for all a ∈ A, dB(a) = 0.
Since B is a closed subset, we get A ⊂ B. Symmetrically, we get B ⊂ A,
which shows that dH is separated. Let now A,B,C ∈ K(D). Since dB(·) is
1-Lipschitz, for all a ∈ A and c ∈ C, dB(a) 6 dB(c) + d(a, c). By definition,
dB(c) 6 dH(C,B). Hence,

dB(a) 6 dH(C,B) + inf
c∈C

d(a, c)

= dH(C,B) + dC(a)

6 dH(C,B) + dH(A,C),

so that supa∈A dB(a) 6 dH(C,B)+dH(A,C). By a symmetric argument, we
get supb∈B dA(b) 6 dH(C,A)+dH(B,C), which gives the triangle inequality
dH(A,B) 6 dH(A,C) + dH(C,B). �

An equivalent formulation of dH can be written in terms of offsets. Recall
that the r-offset of K is defined as

Kr = {x ∈ D, dK(x) 6 r} ,
that is, the set of ambient points that are at distance less than or equal to
r from K.

Proposition 1.2. For all A,B ∈ K(D),

dH(A,B) = inf {r > 0, Ar ⊃ B and Br ⊃ A} .

Proof of Proposition 1.2. By definition, for all a ∈ A, dB(a) 6 dH(A,B),

which yields BdH(A,B) ⊃ A. Symmetrically, AdH(A,B) ⊃ B, and hence

dH(A,B) > inf {r > 0, Ar ⊃ B and Br ⊃ A} .
Conversely, without loss of generality, there exists a point a0 ∈ A such that
dB(a0) = dH(A,B). Hence, for all r < dH(A,B), a0 /∈ Br and in particular
Br 6⊃ A. Hence the result. �

2. The Metric Space (K(D),dH)

The Hausdorff distance is a rigid distance, in the sense a single point
added to a set — say, an outlier — can have the Hausdorff distance blow
up, since dH(A,A ∪ x) = dA(x). It plays the role of a L∞ dissimilarity in
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the space of compact sets. One can make this idea precise by identifying
a compact subset A ⊂ D to its distance function dA(·), which is locally
bounded.

Proposition 2.1. The map

(K(D),dH) −→ (C(D,R+), ‖·‖∞)

A 7−→ dA(·)

is an isometry. In other words, for all A,B ∈ K(D),

dH(A,B) = sup
x∈D
|dA(x)− dB(x)|.

Moreover, if (D, d) is complete, (K(D), dH) is closed in (C(D,R+), ‖·‖∞).

Proof. For all x ∈ A, dA(x) = 0, so that

sup
a∈A

dB(a) = sup
x∈A

dB(x)− dA(x) 6 sup
x∈D

dB(x)− dA(x).

We now prove the reverse inequality. For x ∈ D, write πA(x) for any element
of A such that dA(x) = d(x, πA(x)). Then, since dB(·) is 1-Lipschitz,

dB(x)− dA(x) = dB(x)− d(x, πA(x))

6 dB(πA(x))

6 sup
a∈A

dB(a),

which yields the desired reverse bound, and hence

sup
a∈A

dB(a) = sup
x∈D

dB(x)− dA(x).

By symmetry,

sup
b∈B

dA(b) = sup
x∈D

dA(x)− dB(x).

Conclude writing

sup
x∈D
|dA(x)− dB(x)| = max

{
sup
x∈D

dB(x)− dA(x), sup
x∈D

dA(x)− dB(x)

}
= max

{
sup
a∈A

dB(a), sup
b∈B

dA(b)

}
= dH(A,B).

Finally, if (D,d) is complete, the closedness of K(D) in the space of contin-
uous functions is proved in Lemma 3.1.1 of [2]. �

Remark 2.2. Actually, we proved the (slightly) more precise identity

dH(A,B) = sup
x∈K
|dA(x)− dB(x)|,

for all A∪B ⊂ K ⊂ D, meaning that one can restrict the distance functions
to the domain A∪B to compare A and B. When measuring the dissimilarity
between compact subsets, we can somehow restrict to the geometry of (A∪
B, d).
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By identifying a compact subset with its associated distance function, one
can see (K(D),dH) as a closed subset of (C(D,R+), ‖·‖∞). Consequently, it
inherits its usual topological and metric properties. Conversely, one has the
isometric closed inclusion

(D, d) −→ (K(D), dH)

x 7−→ {x} ,
that allows to identify a point x to the singleton {x}. Hence, roughly speak-
ing, (K(D),dH) cannot have better metric properties than (D, d). We recall
that a metric space is said to be boundedly compact if all its closed bounded
subsets are compact. In particular, a boundedly compact metric space is
complete.

Proposition 2.3. Let (D,d) be a metric space.

(i) (D,d) is separable if and only if (K(D), dH) is separable,
(ii) (D,d) is compact if and only if (K(D), dH) is compact,

(iii) (D,d) is boundedly compact if and only if (K(D),dH) is boundedly com-
pact,

(iv) (D,d) is complete if and only if (K(D), dH) is complete,
(v) (D,d) is Polish if and only if (K(D),dH) is Polish.

Proof. (i) For the direct sense, notice that a dense sequence {xi}i∈N of
D provides the countable family {∪i∈I {xi}}finite I⊂N which is dense in
K(D). Conversely, if K(D) is separable, so is D, as a closed subset of
the metric space K(D).

(ii) If (D,d) is compact, then K(D) ' {dA(·)}A∈K(D) is an equicontinuous

and relatively compact family of C(D,R+), with D compact. Hence, it
is compact. Conversely, if K(D) is compact, so is D, as a closed subset
of K(D).

(iii) Follows from the same argument as (ii) by localizing.
(iv) From Proposition 2.1, K(D) is a closed subset of the complete space

space C(D,R+), so it is complete. Conversely, if K(D) is complete, so is
D, as a closed subset of K(D).

(v) Is a rephrasing of (i) with (iv).
�

To avoid measure-theoretic difficulties, the mildest framework commonly
adopted to develop probability theory is random variables with values in
Polish spaces [4]. Hence, working in (K(D), dH) when (D,d) is Polish will
have all the usual probability theory tools operate in a non-pathological way.
In particular, manipulating random variables in (K(RD), dH) will not raise
any specific issue.

3. Compact Set-Valued Random Variables

Now that we made sure handling compact sets-valued random variables is
not problematic, let us describe some of them in the case (D,d) = (RD, ‖·‖).
We give a few examples of measurable maps in K(RD) endowed with the
Borel σ-field associated to the Hausdorff metric dH. We let C(RD,RD)
denote the set of continuous map from RD to itself, that we endow with the
topology of the uniform convergence on compact sets, and its Borel σ-field.
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Proposition 3.1. Equip K(RD) with the Borel σ-field associated to the
Hausdorff metric dH. Then the following maps are measurable:

(i) RD 3 x 7−→ {x}, for all x ∈ RD,
(ii) C(RD,RD)×K(RD) 3 (f,A) 7→ f(A) =

{
f(x), x ∈ A

}
,

(iii) K(RD)×K(RD) 3 (A,B) 7−→ A ∪B,
(iv) K(RD) 3 A 7→ conv(A).

Proof. We actually prove continuity of the considered map, which is stronger
than measurability.

(i) It is an isometry.
(ii) To prove that the map (f,A) 7→ f(A) is jointly measurable, it is suffi-

cient to prove continuous in each variable separately, from Lemma 4.51
in [1]. Fix A ∈ K(RD). Then for all f, g continous, dH(f(A), g(A)) 6
supx∈A |f(x) − g(x)|, which goes to zero when g converges to f on the
compact A. Let now f be fixed. Then for all A ∈ K(RD), consider
K = A1, the offset of radius 1 of A. Then f is uniformly continuous on
the compact set K. Hence, for all ε > 0, there exists η > 0 such that
for all x, y ∈ K such that ‖y − x‖ 6 η, ‖f(y)− f(x)‖ 6 ε. Hence, for
dH(A,B) 6 η ∧ 1, we get dH(f(A), f(B)) 6 ε, which proves continuity
of B 7→ f(B) at A, and concludes the proof.

(iii) Writting r = max
{

dH(A1, A2), dH(B1, B2)
}

, we have (A1 ∪B1)r = Ar
1 ∪

Br
1 ⊃ A2 ∪B2. Symmetrically, (A2 ∪B2)r ⊃ A1 ∪A2, so that

dH(A1 ∪B1, A2 ∪B2) 6 max
{

dH(A1, A2), dH(B1, B2)
}
.

(iv) For any convex combination a =
∑

i λiai ∈ conv(A) of elements of A,

considering convex combinations b =
∑

i λibi for bi ∈ B clearly yields

dconv(B)(a) 6
∑
i

λidB(ai) 6
∑
i

λi dH(A,B) = dH(A,B).

Symmetrically, we obtain dconv(A)(b) for all b ∈ conv(B). Hence,

dH(conv(A), conv(B)) 6 dH(A,B). �

By composition, Proposition 3.1 actually allows to describe a wide variety
of measurable maps. For instance, a simplicial complex is a finite union of
simplicies, and simplicies are convex hulls of finite sets. As a consequence,
(i),(ii) and (iv) show that simplicial complexes M̂ built on top of a random
point cloud Xn for which the presence of each simplex is determined by a
measurable event, yield estimators. Similarly, the union of local polynomial
patches are measurable from (ii) and (iii).

4. Further Sources

For (much) more details about measurability in classes of subspaces, we
refer to [3], and to [2] for the functional approach we adopted.
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